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In a series of recent publications it has been shown that
there is an almost complete formal analogy in the re-
lations describing the effective shear viscosity of sus-
pensions and the effective tensile modulus of porous
media [1–5]. Note that this analogy originates from the
possibly analogous microstructures or microstructural
models of suspensions and porous media, i.e., it con-
cerns micromechanical relations and is therefore of a
different character than the well-known continuum me-
chanical analogy between linear elasticity and linear
viscosity [6].

Inter alia, it has been shown [4, 5] that the frequently
used Phani–Niyogi relation [7],

Er =
(

1 − φ

φC

)N

, (1)

is the porous media analog of the Krieger relation of sus-
pension rheology [8], when the “critical” (in the sense
of percolation theory [9]) exponent N is interpreted as
N = −[E] φC, i.e., as the negative product of the crit-
ical volume fraction of voids φC (the critical porosity
at which the material looses integrity) and the “intrin-
sic tensile modulus” defined (in analogy to the intrinsic
viscosity of suspension rheology) as

[E] ≡ lim
φ→0

Er − 1

φ
. (2)

In these relations

Er ≡ E

E0
(3)

is the relative tensile modulus, with E being the effec-
tive tensile modulus of the porous material, E0 the ten-
sile modulus of the matrix phase (dense, e.g., pore-free
material) and φ the volume fraction of voids (porosity).
Thus, an alternative formulation of the Phani–Niyogi
relation, Equation 1, is

Er =
(

1 − φ

φC

)−[E]φC

. (4)

In the sense of percolation theory, the critical porosity
may be interpreted as a percolation threshold [10],
although the prediction of this percolation threshold is
dependent on the pore shape and is highly non-trivial

because of the possibility for the pores to overlap.
Nevertheless, results of successful model calculations
for materials with isotropic, uniform, and random
microstructure have been reported in the literature
[11], and the critical porosities predicted appear rather
realistic.

The Phani–Niyogi relation, Equation 4, seems to be
the most universal and flexible relation for the fitting
of experimentally measured porosity dependence of ef-
fective tensile moduli. For spherical pores the intrinsic
tensile modulus [E] should be −2, since in the limit
of very small porosities (“dilute” approximation in the
sense of micromechanics [6, 12]) the Phani–Niyogi re-
lation should reduce to the Dewey–Mackenzie relation
[13–15] for the effective tensile modulus of materials
with a small amount of (non-overlapping, i.e., isolated)
spherical pores,

Er = 1 − 2φ. (5)

Note that the latter relation is identical to the result
of the self-consistent scheme approximation [12]. On
the other hand, in the absence of a critical poros-
ity, i.e., φC = 1, the Phani–Niyogi relation reduces to
the (corrected version of the) Coble–Kingery relation
[1–5],

Er = (1 − φ)2, (6)

when [E] = −2, i.e., when the pores are spherical. Note
that although porosities close to 100% are attainable in
foams and network structures [16], for isolated spheri-
cal pores the case φC = 1 would correspond to a highly
idealized case, with a microstructure corresponding to
a very special type of foam (fractal foam). Such a mi-
crostructure would be realizable, of course only approx-
imately, by a strongly polydisperse size distribution ar-
ranged in a fractal microstructure with smaller pores in
the interstices between larger ones.

The Phani–Niyogi relation, Equation 4, can be
used as a three-parameter fit model (with E0, φC and
[E] as adjustable parameters), as a two-parameter fit
model (when the value of E0 is reliably known), or for
comparison purposes (when E0 is known and φC and
[E] have been predicted for model microstructures
via numerical simulations, cf. [11]). When used as a
three-parameter fit model, depending on the non-linear
regression software used, parameter guesses may be
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required and/or covergence problems may arise, which
may lead to failure of the fitting procedure.

In this brief note we present a new relation for
the description of the porosity dependence of effec-
tive tensile modulus of brittle materials. It is simpler
than the Phani–Niyogi relation, Equation 4, but re-
tains the most important feature of the latter, viz. it al-
lows for a critical porosity (percolation threshold) φC.
In fact, our relation seems to be the simplest one al-
lowing for a percolation threshold, which at the same
time exhibits correct behavior in the dilute limit, cf.
Equation 5, and reduces to the Coble–Kingery relation,
Equation 6, in the absence of φC. A further require-
ment that must be met by such a relation is that for
φ = φC the relative tensile modulus must be zero. It
can easily be verified that, for arbitrary intrinsic tensile
moduli [E], the following relation satisfies all these
requirements:

Er = (1 + [E]φ − ([E] + 1)φ2) ·
(

1 − φ/φC

1 − φ

)
. (7)

In the case of spherical pores the intrinsic tensile mod-
ulus [E] is −2, and in this case Equation 7 adopts the
extremely simple form

Er = (1 − φ) ·
(

1 − φ

φC

)
. (8)

As far as we know, this relation has never been used be-
fore in the elasticity context. We have tested Equation 8
with a large number of different data sets as a two-
parameter fit model (or as a one-parameter fit model
with E0 assumed to be known). It turned out to be
remarkably successful for this purpose, even in cases
where fitting with the Phani–Niyogi relation failed be-
cause of “bad” (ill-behaved) data.

The idea for the construction of this new rela-
tion, Equation 7, and its special case, Equation 8,
is very simple and has a certain analogy to a rela-
tion in suspension rheology, which has been derived
by Robinson [17], cf. also Mooney [18]. Robinson’s
relation is

ηr = 1 + [η] ·
(

φ

1 − φ/φC

)
, (9)

where ηr is the relative shear viscosity, defined in anal-
ogy to Equation 3, [η] is the intrinsic viscosity (which
adopts Einstein’s [19] value of 2.5 in the case of rigid
spheres), φ denotes the volume fraction of solids, and
φC is its critical value. Evidently, the Robinson relation,
Equation 9, which is the simplest relation for the rela-
tive shear viscosity allowing for a percolation threshold
(critical solids volume fraction), reduces to the Jeffery–
Einstein relation [19, 20],

ηr = 1 + [η] · φ, (10)

in the dilute limit and yields an infinite value (ηr → ∞)
for φ → φC, as required.

Finally, it might be of interest that the so-called
Hasselman relation [21],

Er = 1 + Aφ

1 − (A + 1)φ
, (11a)

where A is a parameter (to be determined by fitting)
can formally be rewritten as

Er = 1 − φ

1 − φ/φC
, (11b)

with φC = 1/A. This relation should be compared with
our Equation 8. Evidently, the Hasselman relation vi-
olates both requirements mentioned above: it neither
reduces to the Jeffery–Einstein relation, Equation 10,
in the dilute limit, nor does it exhibit correct limit be-
havior (Er → 0) for φ → φC. Thus, it is clear that the
Hasselman relation has to be discarded for principal
reasons.

Although the Phani–Niyogi relation, Equation 4, is
and remains clearly the most universal and flexible fit
model for the purpose in question, our new relations (7)
and (8) are simpler than the latter, while at the same
time retaining its most important feature, viz. the pos-
sible occurrence of a critical volume fraction (perco-
lation threshold). In particular, Equation 8 is easier to
handle (i.e., often more successful in fitting) than the
Phani–Niyogi relation due to its extreme simplicity, i.e.,
the reduced number of parameters. In contrast to the
Hasselman relation, Equation 11b, our new relation (8)
exhibits correct limit behavior and has therefore to be
preferred for principal reasons.
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959.
2. Idem., ibid. (in press).
3. Idem., ibid. (submitted).
4. Idem., Effective Properties of Suspensions and Porous Materials

from the Viewpoint of Micromechanics, in “Proceedings of the
5th Conference on Preparation of Ceramic Materials,” edited by
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13. J . M. D E W E Y , J. Appl. Phys. 18 (1947) 578.
14. J . K . M A C K E N Z I E , Proc. Phys. Soc. London B 63 (1950) 2.
15. R . M. C H R I S T E N S E N , Int. J. Solids Struct. 83 (2000) 93.
16. L . J . G I B S O N and M. F . A S H B Y , in “Cellular

Solids—Structure and Properties,” 2nd ed. (Cambridge University
Press, Cambridge, 1997).

17. J . V . R O B I N S O N , J. Phys. Coll. Chem. 53 (1949) 1042.
18. M. M O O N E Y , J. Coll. Sci. 6 (1951) 162.
19. A . E I N S T E I N , Ann. Physik 19 (1906) 289.
20. G . B . J E F F E R Y , Proc. Roy. Soc. Lond. A 102 (1922)

161.
21. D . P . H . H A S S E L M A N , J. Amer. Ceram. Soc. 45 (1962)

452.

Received 4 December 2003
and accepted 21 January 2004

3503


